Zuammenfassung: Reelle Funktionen

1 Grundlegendes

a) Zahlenmengen

IN	=	$\{1; 2; 3; 4; \ldots\}$	Natürliche Zahlen
\mathbb{N}_0	=	$\mathbb{N} \cup \{0\}$	Natürliche Zahlen mit 0
Z	=	$\{\ldots; -2; -1; 0; 1; 2; \ldots\}$	Ganze Zahlen
Q	=	$\left\{\frac{z}{n} z\in\mathbb{Z},n\in\mathbb{Z}\setminus\{0\}\right\}$	Rationale Zahlen
ightharpoons			Reelle Zahlen

Merke:

Eine rationale Zahl kann sowohl als Bruch als auch als endlicher oder periodischer Dezimalbruch geschrieben werden. Die Dezimaldarstellung einer irrationaler Zahl ist immer nichtperiodisch und nichtabbrechend.

b) Rechengesetze

	Addition	Multiplikation	
Kommutativgesetz	a + b = b + a	$a \cdot b = b \cdot a$	
Assoziativgesetz	a + (b+c) = (a+b) + c	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	
Distributivgesetz	$a \cdot (b+c) = a \cdot b + a \cdot c$		

c) Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

d) Intervalle

Da man nicht alle reellen Zahlen zwischen zwei Zahlen a und b aufzählen kann, führt man folgende Schreibweisen ein:

[a;b]	abgeschlossenes Intervall:		
	Menge aller rationaler Zahlen zwischen a und b , wobei		
	a und b zur Menge gehören.		
a;b[offenes Intervall:		
	Menge aller rationaler Zahlen zwischen a und b , wobei		
	a und b nicht zur Menge gehören.		
[a;b[halboffenes Intervall:		
	Menge aller rationaler Zahlen zwischen a und b , wobei		
	a zur Menge gehört, b aber nicht.		
a;b	halboffenes Intervall:		
	Menge aller rationaler Zahlen zwischen a und b , wobei b		
	zur Menge gehört, a aber nicht.		

2 Der Funktionsbegriff

<u>Definition:</u>

Unter einer Funktion f mit der Definitionsmenge $\mathbb D$ und der Wertemenge $\mathbb W$ versteht man eine Abbildung, die jedem Element $x \in \mathbb D$ genau ein Element $y \in \mathbb W$ zuordnet. Man schreibt:

$$f: x \longmapsto y = f(x) \quad ; \quad x \in \mathbb{D}$$

y heißt Funktionswert f(x).

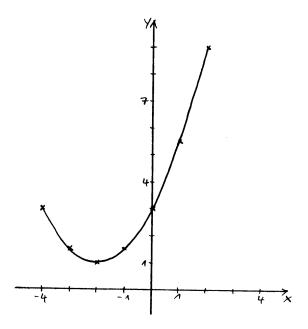
3 Darstellungsarten von Funktionen

a) beschreibend

f ordnet jeder reellen Zahl die Summe aus ihrem halben Quadrat, ihrem doppelten Wert und der Zahl 3 zu.

b) Wertetabelle

c) Funktionsgraph



d) Zuordnungsvorschrift

$$f: x \mapsto \frac{1}{2}x^2 + 2x + 3$$

e) Funktionsgleichung

$$f(x) = \frac{1}{2}x^2 + 2x + 3$$

4 Einschränkungen des Definitionsbereichs

Als Grundmenge ist bei den reellen Funktionen IR gegeben. Für die Definitionsmenge gibt es jedoch grundlegende Einschränkungen:

1. Enthält der Funktionsterm einen Bruch, so darf der Nenner nicht Null sein.

$$\boxed{\mathbf{B:}} \quad f(x) = \frac{x^2}{x^2 - 4} \quad \Longrightarrow \quad \mathbb{D} = \mathbb{R} \setminus \{-2; 2\}$$

2. Der Radikand einer Wurzel darf nicht negativ sein.

$$\boxed{\mathbf{B:}} \quad g(x) = \sqrt{x^2 - 3} \quad \Longrightarrow \quad \mathbb{D} = \mathbb{R} \setminus \left] -\sqrt{3}; \sqrt{3} \right[$$

3. Das Argument eines Logarithmus muss positiv sein.

$$\boxed{\mathbf{B:}} \quad h(x) = \log(3x + 7) \quad \Longrightarrow \quad \mathbb{D} = \left] -\frac{7}{3}; \infty \right[$$

Lineare Funktionen 4

5 Lineare Funktionen

Eine Funktion mit der Funktionsgleichung

$$f(x) = mx + t$$

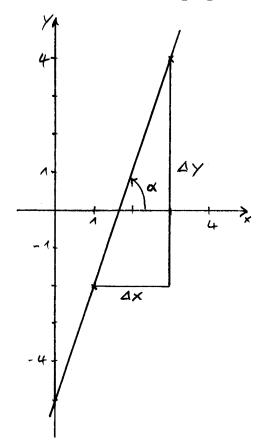
nennt man lineare Funktion. Ihr Graph ist eine Gerade, m heißt Steigung und t ist der y-Achsen-Abschnitt.

m > 0: die Gerade steigt nach rechts an

m < 0: der Gerade fällt nach rechts ab

m = 0: die Gerade ist parallel zur x-Achse

 \mathbf{A} : Stelle die Funktionsgleichung der Geraden durch die zwei Punkte A(1|-2) und B(3|4) auf und bestimme die Nullstelle und den Neigungswinkel gegenüber der x-Achse.



Steigung:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{3 - 1} = 3$$

A oder B einsetzen liefert t:

$$A \in \mathbb{G}_f \implies -2 = 3 \cdot 1 + t \implies t = -5$$

Funktionsgleichung:

$$f(x) = 3x - 5$$

Nullstelle:

$$3x - 5 = 0 \implies x = \frac{5}{3}$$

Neigungswinkel:

$$m = \tan \alpha \implies \alpha = 71,565^{\circ}$$

6 Quadratische Funktionen

Eine Funktion mit der Funktionsgleichung

$$f(x) = ax^2 + bx + c \quad , \quad a \neq 0$$

nennt man quadratische Funktion. Ihr Graph ist eine Parabel, a bestimmt das Aussehen der Parabel:

|a| = 1: Normalparabel

|a| < 1: Graph ist breiter als Normalparabel

|a| > 1: Graph ist schmäler als Normalparabel

a > 0: Parabel nach oben geöffnet

a < 0: Parabel nach unten geöffnet

Scheitelform:

Bei der Gleichungsform

$$f(x) = a(x - x_s)^2 + y_s$$

kann man die Koordinaten des Scheitels S ablesen: $S(x_s|y_s)$

<u>Nullstellenform:</u>

Besitzt eine quadratische Funktion die Nullstellen $(x_1|0)$ und $(x_2|0)$, so kann ihre Gleichung in der Form

$$f(x) = a(x - x_1)(x - x_2)$$

geschrieben werden.

Nullstellenbestimmung:

$$x_{1/2} = \frac{1}{2a} \left(-b \pm \sqrt{b^2 - 4ac} \right)$$

Diskriminante: $D = b^2 - 4ac$

Symmetrieachse:

Die Senkrechte durch den Scheitel $S(x_s|y_s)$ ist die Achse der Parabel:

$$x = x_s$$

A: Bestimme die Scheitel- und die Nullstellenform der Parabel mit der Funktionsgleichung $f(x) = -\frac{1}{2}x^2 + 3x - \frac{5}{2}$.

$$f(x) = -\frac{1}{2}(x^2 - 6x + 5)$$

$$f(x) = -\frac{1}{2}(x-3)^2 + 2$$
 (quadratische Ergänzung!)

S(3|2)

$$x^2 - 6x + 5 = (x - 1)(x - 5)$$

$$x_1 = 1, x_2 = 5$$

$$f(x) = -\frac{1}{2}(x-1)(x-5)$$

A: Bestimme die Gleichung $f(x) = ax^2 + bx + c$ der Parabel durch die Punkte A(0|-1), B(2|-1) und C(-2|2).

(I)
$$-1 = a \cdot 0 + b \cdot 0 + c \implies c = -1$$

(II)
$$-1 = a \cdot 2^2 + 2b + c$$

(III)
$$2 = 4a - 2b - 1$$

(II')
$$2a + b = 0 \implies b = -2a$$

(III')
$$4a - 2b = 3 \implies 8a = 3$$

$$\implies a = \frac{3}{8} \implies b = -\frac{3}{4}$$

$$\implies f(x) = \frac{3}{8}x^2 - \frac{3}{4}x - 1$$

Symmetrie 7

A: Berechne die Schnittpunkte der Graphen von $f: x \mapsto \frac{1}{2}x^2$ und $g: x \mapsto \frac{1}{2}x + 1$.

$$f(x) = g(x)$$

$$\frac{1}{2}x^2 = \frac{1}{2}x + 1 \implies x^2 - x - 2 = 0$$

(x-2)(x+1) = 0 Vieta oder Lösungsformel

$$x_1 = -1; x_2 = 2$$

$$y_1 = 0, 5; y_2 = 2$$

$$S_1(-1|0,5); S_2(2|2)$$

7 Symmetrie

a) Symmetrie zur y-Achse: Gerade Funktion

$$f(-x) = f(x)$$

B:
$$f(x) = x^4 - 2x^2 + \cos x \implies f(-x) = (-x)^4 - 2(-x)^2 + \cos(-x) = f(x)$$

b) Symmetrie zum Ursprung: Ungerade Funktion

$$f(-x) = -f(x)$$

B:
$$f(x) = -x^3 + 5x + \sin x \implies f(-x) = x^3 - 5x - \sin x = -f(x)$$

8 Ganzrationale Funktionen

Eine Funktion f, deren Funktionsgleichung in der Form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

mit $a_n, a_{n-1}, \ldots, a_1, a_0 \in \mathbb{R}$ geschrieben werden kann, nennt man ganzrationale Funktion. Ist $a_n \neq 0$, so hat die Funktion den Grad n. Die reellen Zahlen $a_n, a_{n-1}, \ldots, a_1, a_0$ nennt man Koeffizienten, die Funktionsterme Polynome.

Merke: Zerlegungssatz

Wenn x_0 eine Nullstelle der ganzrationalen Funktion f vom Grad n $(n \in \mathbb{N})$ ist, gibt es folgende Zerlegung:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $(x - x_0)(b_{n-1} x^{n-1} + \dots + b_1 x + b_0)$, $b_{n-1} \neq 0$

Daraus folgt: Man kann f(x) durch $(x - x_0)$ teilen.

B:
$$f(x) = x^3 - 3x^2 + 4$$

$$x_1 = 2$$

$$(x^3 - 3x^2 + 4) : (x - 2) = x^2 - x - 2$$
 ("Polynomdivision")

$$\implies f(x) = (x-2)(x^2-x-2)$$

$$x^2 - x - 2 = (x - 2)(x + 1)$$

$$\implies f(x) = (x-2)(x-2)(x+1) = (x-2)^2(x+1)$$

Bei x=2 hat die Funktion f eine doppelte Nullstelle!

$$\boxed{\mathbf{B:}} \quad f(x) = -2x^4 - 4x^3 - 8x^2 - 16x$$

$$x_1 = 0$$

$$f(x) = -2x(x^3 + 2x^2 + 4x + 8)$$

$$x_2 = -2$$

$$(x^3 + 2x^2 + 4x + 8) : (x + 2) = x^2 + 4$$

 $x^2 + 4$ ist nicht weiter faktorisierbar!

$$\implies f(x) = -2x(x+2)(x^2+4)$$